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Self-organized criticality in a computer network model
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We study the collective behavior of computer network nodes by using a cellular automaton model. The
results show that when the load of network is constant, the throughputs and buffer contents of nodes are
power-law distributed in both space and time. Also the feature fohdise appears in the power spectrum of
the change of the number of nodes that bear a fixed part of the system load. It can be seen as yet another
example of self-organized criticality. Power-law decay in the distribution of buffer contents implies that heavy
network congestion occurs with small probability. The temporal power-law distribution for throughput might
be a reasonable explanation for the observed self-similarity in computer network traffic.

PACS numbd(s): 05.40—a, 89.80+h

I. INTRODUCTION work by Willinger et al,, provides a simple explanatids].
They show that the self-similar traffic can be constructed by
The rapidly growing global data netwofknternej, con-  multiplexing a large number obN/OFF sources that have
necting millions of computers, has gradually reached a conheavy-tailedoNn and oFr period length. Some interrelated
siderably huge scale for which methods of statistical physicswork involved the effects of file sizes, transport protocols
especially of complex systems, can play a role in analysig4], and even user behaviolS]. However, this explanation
The whole Internet can be considered as a single system. Thubviously ignores the nonlinearity arising from the interac-
general picture of this system has recently been unveiled byion of traffic sources competing for network resources.
researchers at the Cooperative Association for Internet Datiloreover, it does not stress the interaction of autonomous
Analysis (CAIDA) in San Diego, Californid1]. The topol- nodes in this driven system, which can produce collective
ogy of the system is irregular. It has a hierarchical, treelikephenomena.
structure, with some loops. At the vortices of the system When the load offered to any network is more than it can
there are many nodes, called gateways, routers, bridges, ethandle, congestion builds up. The Internet is no exception. In
which help to route the data packets to the destination, antheory, congestion can be dealt with by employing a prin-
have significant autonomy in finding the optimal way from ciple borrowed from physics: the law of conservation of
source to destination. packets, by which a new packet will not be injected into the
Simulating how the Internet behaves is an immenselynetwork until an old one leaves. TQBansmission control
challenging undertaking because of its heterogeneity angrotoco) in the Internet attempts to achieve this goal by
rapid change. The heterogeneity ranges from the individuadlynamically manipulating the source rafgs. In addition,
links that carry the network traffic to the protocols that inter-there is not any cooperation between the nodes. The Internet
operate over the links, and to the “mix” of different appli- users still encounter congestion frequently, which may
cations used at a site and the levers of congestaat) seen  emerge at different degrees, and last different periods. The
on different links[2]. The design of the Internet continues to effect of aggravating load and TCP can be easily understood
evolve, and many aspects of its behavior are poorly undeiin a bottleneck. However, fathoming the congestion varying
stood. Due to the network complexity, simulation plays aspatiotemporally is really a hard question.
crucial role in attempting to characterize how different facets  Until recently, the researches of Internet dynamics have
of the network behave, and how proposed changes mighhainly concentrated on two facets in the network commu-
affect the network properties. Yet simulating different as-nity. On the one hand, the investigators study dynamics of
pects of the Internet is exceedingly difficult. Thus one keyone single node in order to understand the dynamics of the
strategy for developing meaningful simulations in the face ofwhole network. They believe that they can predict the behav-
these difficulties is searching for invariability. By the term ior of a large interactive system by studying its elements
invariability we mean facets of network behavior which haveseparately and by analyzing its microscopic mechanism in-
been empirically shown to hold in a very wide range of en-dividually. On the other hand, they pay attention to influ-
vironments. ences from outside the Internet. For example, Huberman and
A number of recent empirical studies on traffic measured{ ukose stated that because most users pay a flat rate for
ments from a variety of working packet networks have con-unlimited access, user behavior causes the Internet's conges-
vincingly demonstrated that actual network traffic is self-tion [7]. Parket al. reckoned that self-similar traffic is in-
similar in nature. However, the reasons behind networlduced by heavy-tailed distribution of file sig4]. Obviously,
traffic self-similarity have not been clearly identified. The the Internet is an interactive dissipative dynamical system.
Complex behaviors may still emerge in the Internet with
simple or even changeless load. However, for lack of a better
*FAX: +86 010 62781382. theory, there has not been much literature on the dynamics of
Electronic address: yuanjn@sdp.ee.tsinghua.edu.cn the Internet itself.
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We cannot predict when and where the congestion occurs.
Such a plight is very similar to what we meet in highway

traffic. Recently cellular automaton models have been in-
creasingly used in simulations of highway traffig,9].

Physicists have contributed a lot to the better understanding . O
of traffic flow. The methods of statistical physics and non- .
linear dynamics have been successfully applied to these ° Buffer H

models, stressing the notion of a dynamical transition from

low-density laminar flow to high-density jammed behavior

[10]. Csabai called researchers’ attention to the close analogy (@

between the basics of data traffic on the Internet and vehicle

traffic on the highway a few years adl]. His measure-

ment also showed that the power spectrum of the round-trip MO 1O 1O - O~

time between two points of the Internet i dike. Although ®)

he is not continuing his research work, he still pointed out

that the models of collective phenomena, such as highway FIG. 1. (8 A bottleneck node, which has a buffer and a server

traffic models, could be appropriate for describing the behayvWwith the service ratg., shared by some sources controlled by TCP.

ior of data communication in computer networks. On the(b) Many nodes are linked in series, all the side branches of net-
other hand, some researchers used the concept of phase triQrk are discarded, and only the line of a two-point connection is
sition to explain the fluctuation of packet delivery time in described.

computer networks. They found that the network operate

¢ efficiently in the vicinity of th itical point. and i Yection is characteristic of a driven diffusive system, and the
most etmiciently in e vicinity of the critical point, and IN- 404 state is the most efficient state that can be actually

ferred that the shifting of the phase transition point means, . hed dynamicallf18,19,. Therefore a node could operate
that the collective behavior of routers may play a crucial role, '

. - . most efficiently in the vicinity of a critical state with maxi-
in deciding the congestion nature of the netw¢i,13. .
Takayaslet al. theoretically clarified the phase transition be- mum throughput and the least packet numbers in its buffer.

) . . Let us consider now a heavily loaded computer network to
havpr of buffer dy”a.”.“cil“]- They proposed a simple dy- study the collective behavior of the nodes which are the in-

feraction agents below, not taking into account the mutual

interaction of the packets themselves. The interaction of
nodes can produce collective phenomena, which cannot be
foreseen from examination of the counterparts.

0 \we first mention Kleinrock's independence assumption,

plain 1f-type noise in round trip time with the Cayley tree
(or Bethe lattice [15], and also demonstrated the existence
of strong spatial correlation of congestion levEl$]. In our

other paper, we studied a simple model at the packet level

describe the outflow from a packet jam self-organizes to hi ; - :
- X ich dominates over the network analyg20]. With this
critical state of maximum throughp{iL7]. We showed that assumption, the input processes of all nodes are independent

the emergence of collective behavior of packets causes thg o, other, and then the network analysis is not too diffi-
long-range dependence of congestion in the computer neI:'ult. Actually, a series of packets entering a node will be the

Wolrks:[.h_ tudv the d ical princiol f input of the next node. Two input processes are obviously
tn 'St papker, \éve sdu Iy leV&/narlnlca t{_:)rlnc[[ptesrci cotrrr:— orrelated in time and quantity. In order to illustrate this
puter networks at node level. Ve aiso atiempt 1o show orrelation, we link the nodes, discarding all the side

the emergent phenomena from a collection of autonomouBn,inCh(_}S of network, and only describe the line of a two-

nqdes \.Nhi.Ch adaptively self-organize ".“0 a complex Stfa.t%oint connection. This setup is depicted in Figb)L So we

with ubiquitous power laws as the classic hallmarks of Criti-.ould use a one-dimensional cellular automaton model to
cghty, can result. n t.he wraffic self-similarity and the unpre- simulate the behavior of network nodes. To our knowledge,
dictable congestion in the Internet. this paper might be the first to suggest such a model for a

The outline of this paper is as follows. We describe thecomputer network.

mode[ in Sef:. Il, and dispuss . phenonjenologipal behaviors Our computational model is defined on a one-dimensional
and S'”?“'a“O” results in Sec. lll. Section IV gives a Shortarray of L sites with open or periodic boundary conditions.
discussion. Each site may be empty or occupied by one particle.Met
particles be randomly placed in sites L>M). Each par-
Il. MODEL ticle corresponds to a node, and moves from left to right with
an integer velocity. The number of empty sites between two
A typical bottleneck node model is depicted in Figa)l  contiguous particles represents the buffer contents of the left
In this model, some TCP controlled sources share a nodeode. Note that the order of nodes here is in reverse order
which has a buffer and a server with the service rate compared with the order in Fig.(l). If a particle runs fast
When the node receives more packets sent by these souragsrresponding to a node with large throughpthte left par-
than it can deal with, it momentarily queues the packets noticle must also move fast in order to reduce the distance to its
forwarded immediately in its buffer, thus increasing the de-right one(corresponding to a reduction of the queue length
lay of the packets through the network. This is similar to theof the left node.
case when many vehicles crowd into a section of a highway, In this paper, we choose the periodic boundary condition,
where the traffic self-organizes to a critical state of maxi-i.e., the output of the left most node being the input of the
mum outflow[9]. This feature of maximum throughput se- right most, to keep the network load constant. For an arbi-
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FIG. 2. A typical pattern for a system of site=1000, where
M =100, v;,5=20, andp=0.05. 1000 time steps of system evolu-
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FIG. 3. A bottleneck situation with the same parameters as Fig.
2, except thawv,,,,=5 for one of the nodes.

tion are shown. The horizontal direction is space and the vertical

direction (up) is (increasing time.

the figure instead of alM particles. The smoother the curve
is, the larger the throughput of the node. The falling through-

trary configuration, one update of the system consists of thguts spread backward as time goes on. The change of the

following steps, which are performed in parallel for all
nodes.

(2) If the throughputy;(n) of nodei (1<i<M) at timen
is lower thanv,,,, and if the queue length of node d;(n),
is larger tharw;(n) + 1, the throughput is increased by 1, i.e.,
Vi(n+1):Vi(n)+l.

(2) If nodei presents thai;(n)=d;(n), thenv;(n+1)
:di(n).

(3) With probability p, the throughput of each nodé
greater than zepois decreased by 1, i.ey;(n+1)=1;(n)
-1

(4) Each node update with;(n+ 1), and therd;(n+1)
=di(n)+v;,1(n+1)—pi(n+1). For the end most nodie
=M, the node +1 in this step represents node 1.

space between particles at different time steps shows the
fluctuation of the queue length of the nodes.

In Fig. 3 we show a bottleneck situation with,,,=5 for
one node and with the other parameters identical to those in
Fig. 2. The buffer contents of the bottleneck node always
stay larger than the others. The node always relaxes the con-
gestion with its maximum throughput. The throughputs of
other nodes fluctuate around the throughput of the bottleneck
node.

To gain more insight into the collective behavior of the
nodes, we change the simulation parameters: the system size
L=50000, the maximum throughput of each nodg,,
=100, the number of nodesl =4000, andp=0.05. We
measure the probability distributions of the throughputs and

The third step is essential for simulating the realistic netRuffer contents of nodes up to 100000 time steps. The dis-
work node since otherwise the dynamics is completely deterfibution for queue lengthd of all nodes at a time step
ministic. It takes into account the natural throughput fluctua-Pdspacéd) Vs d, is shown in Fig. 4a), and the distribution for
tion due to the overhead on computer networks, or due to th@ueue length of a single node for all time stégme(d) vs
variation of the external conditions, say, some traffic acrosé is shown in Fig. 4b). Figure 5 shows the distribution of

the nodes coming from side branches of the network.

IIl. SIMULATIONS

the throughputs’ of all nodes at a time steB, pac{v) Vs v
[Fig. 5(@] and of a single node for all time steP$me(v) Vs
v [Fig. 5(b)]. The straight lines in Figs.(d4) and Ja) have
slopes—1.25 and—1.15 in Figs. 4b) and 3b). It is seen that

We first discuss the phenomenological behaviors of thehe probability distributions for throughputs and buffer con-
model. A typical pattern is shown in Fig. 2 for a system of tents of nodes are power law in both space and time. The fact

sizeL=1000, whereM =100, v,,,,=20, andp=0.05. Start-

that the distributions in Figs. 4 and 5 begin to deviate from

ing with a random initial condition and after discarding a power law at large sizes is a finite-size effect.
transient period of 5000 iterations, Fig. 2 shows the 1000 The queue length can reflect the levers of congestion in
time steps of system evolution. The horizontal direction isnodes. Power-law decay in the distribution of buffer contents

space and the vertical directigap) is (increasing time. Ev-

implies that heavy congestion in the network occurs with

ery dot curve exhibits moving process of a particle. For thesmall probability. The temporal power-law distribution for
convenience of observation, only some particles are drawn ithroughput might be a reasonable explanation for the ob-
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FIG. 4. (a) The distribution for the queue length of all nodes at  FIG. 5. (a) The distribution for throughputs of all nodes at a
a time stepPyspac4d) vs d and (b) the distribution for the queue time stepP,sp,c£¥) vs v and(b) the distribution for throughput of
length of a single node for all time stef&ime(d) vs d, for L a single node for all time sted,ime(v) VS v.
=50 000,M = 4000, v,,,=100, andp=0.05.

sarily manifest itself in nontrivial exponents of the power

served self-similarity in computer network traffic. To gain SPectrum. The exponent of the power spectrum depends on
more information about the nodes bearing a fixed part of théhe level of conservatioh21]. Our current understanding
system load, we first record the time series for the number ofnly tells us to expect the power law without nailing down
nodesN, () in a small segment of lengthin the system, and the exponents.
then calculate the power spectru8(f) of N;(t) for |
=500 as shown in Fig. 6. The curve appears as the feature of
1/f noise, and has a slope of about2.3. Therefore, the
system exhibits a self-organized criticality. The spatiotempo- Simulating different aspects of the Internet is exceedingly
ral scaling in the self-organized critical state does not necedifficult [2]. We do not address the more detailed issues here.

IV. DISCUSSION
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m‘” therefore have to resort to simple, idealistic models that cap-
ture the essential features of real systems. Cellular automaton
models[22] are increasingly used in simulations of complex

s physical systems such as fluid dynam{&3], sand piles
10k 1 [18], and highway traffic[8,10]. In some of the systems,
cellular automaton models provide only some general quali-
tative features of the system while in other cases useful quan-
10 | ] titative information can be obtained. One-dimensiofidD)
cellular automaton models are very simple. They are suc-
cessfully used for capturing the critical slope of sand piles,
although the 1D situation looks completely unrealistic for

-5
10 : . . modeling sand piles. 1D models are also unrealistic for com-
10" 10" 10° 10° 10} puter networks. However, based on such 1D models, it is still
£ feasible to capture the essential features of a network: the

network self-organizes into a critical state by interactions of
FIG. 6. The time series for the number of nod&ét) in a small  nodes. For selecting the periodic boundary condition in our
segment of lengthin the system, was recorded, and then the powemodel, we first consider that the law of conservation of pack-
spectrum,S(f ) of Ni(t) was calculated fot=500. The straight ets in the transmission control protocol of the Internet. Sec-
line has a slope of-2.3. ondly, the emergence of self-organized criticality does not lie
on the open boundary condition or the periodic one in the
Instead, our intent has been to discuss some of the momaodel[24,25, though the former is more reasonable. Third,
fundamental issues. The cellular automaton model presentetlis not easy to select a typical open boundary condition. It is
in this paper might provide an approach for analyzing theconvenient for simulation to choose a periodic boundary
collective behavior of network nodes. condition. Of course, it is not quite perfect for both the
Because composite systems, such as the Internet, contaimodel and the condition, but this is an initial work in a new
many components and are governed by many interactionsrea. We hope our work will lead to widespread discussion
analysts cannot possibly construct mathematical models thand more reasonable models for dynamics of the Internet
are both totally realistic and theoretically manageable. Theytself.
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