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Self-organized criticality in a computer network model

Jian Yuan,* Yong Ren, and Xiuming Shan
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

~Received 6 May 1999!

We study the collective behavior of computer network nodes by using a cellular automaton model. The
results show that when the load of network is constant, the throughputs and buffer contents of nodes are
power-law distributed in both space and time. Also the feature of 1/f noise appears in the power spectrum of
the change of the number of nodes that bear a fixed part of the system load. It can be seen as yet another
example of self-organized criticality. Power-law decay in the distribution of buffer contents implies that heavy
network congestion occurs with small probability. The temporal power-law distribution for throughput might
be a reasonable explanation for the observed self-similarity in computer network traffic.
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I. INTRODUCTION

The rapidly growing global data network~Internet!, con-
necting millions of computers, has gradually reached a c
siderably huge scale for which methods of statistical phys
especially of complex systems, can play a role in analy
The whole Internet can be considered as a single system.
general picture of this system has recently been unveiled
researchers at the Cooperative Association for Internet D
Analysis ~CAIDA ! in San Diego, California@1#. The topol-
ogy of the system is irregular. It has a hierarchical, treel
structure, with some loops. At the vortices of the syst
there are many nodes, called gateways, routers, bridges,
which help to route the data packets to the destination,
have significant autonomy in finding the optimal way fro
source to destination.

Simulating how the Internet behaves is an immens
challenging undertaking because of its heterogeneity
rapid change. The heterogeneity ranges from the individ
links that carry the network traffic to the protocols that inte
operate over the links, and to the ‘‘mix’’ of different appl
cations used at a site and the levers of congestion~load! seen
on different links@2#. The design of the Internet continues
evolve, and many aspects of its behavior are poorly und
stood. Due to the network complexity, simulation plays
crucial role in attempting to characterize how different fac
of the network behave, and how proposed changes m
affect the network properties. Yet simulating different a
pects of the Internet is exceedingly difficult. Thus one k
strategy for developing meaningful simulations in the face
these difficulties is searching for invariability. By the ter
invariability we mean facets of network behavior which ha
been empirically shown to hold in a very wide range of e
vironments.

A number of recent empirical studies on traffic measu
ments from a variety of working packet networks have co
vincingly demonstrated that actual network traffic is se
similar in nature. However, the reasons behind netw
traffic self-similarity have not been clearly identified. Th
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work by Willinger et al., provides a simple explanation@3#.
They show that the self-similar traffic can be constructed
multiplexing a large number ofON/OFF sources that have
heavy-tailedON and OFF period length. Some interrelate
work involved the effects of file sizes, transport protoco
@4#, and even user behaviors@5#. However, this explanation
obviously ignores the nonlinearity arising from the intera
tion of traffic sources competing for network resource
Moreover, it does not stress the interaction of autonom
nodes in this driven system, which can produce collect
phenomena.

When the load offered to any network is more than it c
handle, congestion builds up. The Internet is no exception
theory, congestion can be dealt with by employing a pr
ciple borrowed from physics: the law of conservation
packets, by which a new packet will not be injected into t
network until an old one leaves. TCP~transmission control
protocol! in the Internet attempts to achieve this goal
dynamically manipulating the source rates@6#. In addition,
there is not any cooperation between the nodes. The Inte
users still encounter congestion frequently, which m
emerge at different degrees, and last different periods.
effect of aggravating load and TCP can be easily underst
in a bottleneck. However, fathoming the congestion vary
spatiotemporally is really a hard question.

Until recently, the researches of Internet dynamics ha
mainly concentrated on two facets in the network comm
nity. On the one hand, the investigators study dynamics
one single node in order to understand the dynamics of
whole network. They believe that they can predict the beh
ior of a large interactive system by studying its eleme
separately and by analyzing its microscopic mechanism
dividually. On the other hand, they pay attention to infl
ences from outside the Internet. For example, Huberman
Lukose stated that because most users pay a flat rate
unlimited access, user behavior causes the Internet’s con
tion @7#. Park et al. reckoned that self-similar traffic is in
duced by heavy-tailed distribution of file size@4#. Obviously,
the Internet is an interactive dissipative dynamical syste
Complex behaviors may still emerge in the Internet w
simple or even changeless load. However, for lack of a be
theory, there has not been much literature on the dynamic
the Internet itself.
1067 ©2000 The American Physical Society
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We cannot predict when and where the congestion occ
Such a plight is very similar to what we meet in highw
traffic. Recently cellular automaton models have been
creasingly used in simulations of highway traffic@8,9#.
Physicists have contributed a lot to the better understan
of traffic flow. The methods of statistical physics and no
linear dynamics have been successfully applied to th
models, stressing the notion of a dynamical transition fr
low-density laminar flow to high-density jammed behav
@10#. Csabai called researchers’ attention to the close ana
between the basics of data traffic on the Internet and veh
traffic on the highway a few years ago@11#. His measure-
ment also showed that the power spectrum of the round
time between two points of the Internet is 1/f -like. Although
he is not continuing his research work, he still pointed o
that the models of collective phenomena, such as high
traffic models, could be appropriate for describing the beh
ior of data communication in computer networks. On t
other hand, some researchers used the concept of phase
sition to explain the fluctuation of packet delivery time
computer networks. They found that the network opera
most efficiently in the vicinity of the critical point, and in
ferred that the shifting of the phase transition point me
that the collective behavior of routers may play a crucial r
in deciding the congestion nature of the network@12,13#.
Takayasuet al. theoretically clarified the phase transition b
havior of buffer dynamics@14#. They proposed a simple dy
namical phase transition model, the contact process, to
plain 1/f -type noise in round trip time with the Cayley tre
~or Bethe lattice! @15#, and also demonstrated the existen
of strong spatial correlation of congestion levels@16#. In our
other paper, we studied a simple model at the packet leve
describe the outflow from a packet jam self-organizes t
critical state of maximum throughput@17#. We showed that
the emergence of collective behavior of packets causes
long-range dependence of congestion in the computer
works.

In this paper, we study the dynamical principles of co
puter networks at node level. We also attempt to show
the emergent phenomena from a collection of autonom
nodes which adaptively self-organize into a complex st
with ubiquitous power laws as the classic hallmarks of cr
cality, can result in the traffic self-similarity and the unpr
dictable congestion in the Internet.

The outline of this paper is as follows. We describe t
model in Sec. II, and discuss its phenomenological behav
and simulation results in Sec. III. Section IV gives a sh
discussion.

II. MODEL

A typical bottleneck node model is depicted in Fig. 1~a!.
In this model, some TCP controlled sources share a n
which has a buffer and a server with the service ratem.
When the node receives more packets sent by these so
than it can deal with, it momentarily queues the packets
forwarded immediately in its buffer, thus increasing the d
lay of the packets through the network. This is similar to t
case when many vehicles crowd into a section of a highw
where the traffic self-organizes to a critical state of ma
mum outflow @9#. This feature of maximum throughput se
rs.
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lection is characteristic of a driven diffusive system, and
critical state is the most efficient state that can be actu
reached dynamically@18,19#. Therefore a node could opera
most efficiently in the vicinity of a critical state with maxi
mum throughput and the least packet numbers in its buf
Let us consider now a heavily loaded computer network
study the collective behavior of the nodes which are the
teraction agents below, not taking into account the mut
interaction of the packets themselves. The interaction
nodes can produce collective phenomena, which canno
foreseen from examination of the counterparts.

We first mention Kleinrock’s independence assumptio
which dominates over the network analysis@20#. With this
assumption, the input processes of all nodes are indepen
of each other, and then the network analysis is not too d
cult. Actually, a series of packets entering a node will be
input of the next node. Two input processes are obviou
correlated in time and quantity. In order to illustrate th
correlation, we link the nodes, discarding all the si
branches of network, and only describe the line of a tw
point connection. This setup is depicted in Fig. 1~b!. So we
could use a one-dimensional cellular automaton mode
simulate the behavior of network nodes. To our knowled
this paper might be the first to suggest such a model fo
computer network.

Our computational model is defined on a one-dimensio
array of L sites with open or periodic boundary condition
Each site may be empty or occupied by one particle. LeM
particles be randomly placed inL sites (L.M ). Each par-
ticle corresponds to a node, and moves from left to right w
an integer velocity. The number of empty sites between t
contiguous particles represents the buffer contents of the
node. Note that the order of nodes here is in reverse o
compared with the order in Fig. 1~b!. If a particle runs fast
~corresponding to a node with large throughput!, the left par-
ticle must also move fast in order to reduce the distance to
right one~corresponding to a reduction of the queue leng
of the left node!.

In this paper, we choose the periodic boundary conditi
i.e., the output of the left most node being the input of t
right most, to keep the network load constant. For an a

FIG. 1. ~a! A bottleneck node, which has a buffer and a serv
with the service ratem, shared by some sources controlled by TC
~b! Many nodes are linked in series, all the side branches of
work are discarded, and only the line of a two-point connection
described.
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trary configuration, one update of the system consists of
following steps, which are performed in parallel for a
nodes.

~1! If the throughputn i(n) of nodei (1< i<M ) at timen
is lower thannmax and if the queue length of nodei , di(n),
is larger thann i(n)11, the throughput is increased by 1, i.e
n i(n11)5n i(n)11.

~2! If node i presents thatn i(n)>di(n), then n i(n11)
5di(n).

~3! With probability p, the throughput of each node~if
greater than zero! is decreased by 1, i.e.,n i(n11)5n i(n)
21.

~4! Each node update withn i(n11), and thendi(n11)
5di(n)1n i 11(n11)2n i(n11). For the end most nodei
5M , the nodei 11 in this step represents node 1.

The third step is essential for simulating the realistic n
work node since otherwise the dynamics is completely de
ministic. It takes into account the natural throughput fluctu
tion due to the overhead on computer networks, or due to
variation of the external conditions, say, some traffic acr
the nodes coming from side branches of the network.

III. SIMULATIONS

We first discuss the phenomenological behaviors of
model. A typical pattern is shown in Fig. 2 for a system
sizeL51000, whereM5100,nmax520, andp50.05. Start-
ing with a random initial condition and after discarding
transient period of 5000 iterations, Fig. 2 shows the 10
time steps of system evolution. The horizontal direction
space and the vertical direction~up! is ~increasing! time. Ev-
ery dot curve exhibits moving process of a particle. For
convenience of observation, only some particles are draw

FIG. 2. A typical pattern for a system of sizeL51000, where
M5100,nmax520, andp50.05. 1000 time steps of system evol
tion are shown. The horizontal direction is space and the vert
direction ~up! is ~increasing! time.
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the figure instead of allM particles. The smoother the curv
is, the larger the throughput of the node. The falling throug
puts spread backward as time goes on. The change o
space between particles at different time steps shows
fluctuation of the queue length of the nodes.

In Fig. 3 we show a bottleneck situation withnmax55 for
one node and with the other parameters identical to thos
Fig. 2. The buffer contents of the bottleneck node alwa
stay larger than the others. The node always relaxes the
gestion with its maximum throughput. The throughputs
other nodes fluctuate around the throughput of the bottlen
node.

To gain more insight into the collective behavior of th
nodes, we change the simulation parameters: the system
L550 000, the maximum throughput of each nodenmax
5100, the number of nodesM54000, andp50.05. We
measure the probability distributions of the throughputs a
buffer contents of nodes up to 100 000 time steps. The
tribution for queue lengthd of all nodes at a time step
Pdspace(d) vs d, is shown in Fig. 4~a!, and the distribution for
queue length of a single node for all time stepsPdtime(d) vs
d, is shown in Fig. 4~b!. Figure 5 shows the distribution o
the throughputsn of all nodes at a time stepPvspace(n) vs n
@Fig. 5~a!# and of a single node for all time stepsPvtime(n) vs
n @Fig. 5~b!#. The straight lines in Figs. 4~a! and 5~a! have
slopes21.25 and21.15 in Figs. 4~b! and 5~b!. It is seen that
the probability distributions for throughputs and buffer co
tents of nodes are power law in both space and time. The
that the distributions in Figs. 4 and 5 begin to deviate fro
power law at large sizes is a finite-size effect.

The queue length can reflect the levers of congestion
nodes. Power-law decay in the distribution of buffer conte
implies that heavy congestion in the network occurs w
small probability. The temporal power-law distribution fo
throughput might be a reasonable explanation for the

al

FIG. 3. A bottleneck situation with the same parameters as
2, except thatnmax55 for one of the nodes.
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served self-similarity in computer network traffic. To ga
more information about the nodes bearing a fixed part of
system load, we first record the time series for the numbe
nodesNl(t) in a small segment of lengthl in the system, and
then calculate the power spectrumS( f ) of Nl(t) for l
5500 as shown in Fig. 6. The curve appears as the featu
1/f noise, and has a slope of about22.3. Therefore, the
system exhibits a self-organized criticality. The spatiotem
ral scaling in the self-organized critical state does not nec

FIG. 4. ~a! The distribution for the queue length of all nodes
a time stepPdspace(d) vs d and ~b! the distribution for the queue
length of a single node for all time stepsPdtime(d) vs d, for L
550 000,M54000,nmax5100, andp50.05.
e
of

of

-
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sarily manifest itself in nontrivial exponents of the pow
spectrum. The exponent of the power spectrum depend
the level of conservation@21#. Our current understanding
only tells us to expect the power law without nailing dow
the exponents.

IV. DISCUSSION

Simulating different aspects of the Internet is exceedin
difficult @2#. We do not address the more detailed issues h

FIG. 5. ~a! The distribution for throughputs of all nodes at
time stepPvspace(n) vs n and ~b! the distribution for throughput of
a single node for all time stepsPvtime(n) vs n.
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Instead, our intent has been to discuss some of the m
fundamental issues. The cellular automaton model prese
in this paper might provide an approach for analyzing
collective behavior of network nodes.

Because composite systems, such as the Internet, co
many components and are governed by many interacti
analysts cannot possibly construct mathematical models
are both totally realistic and theoretically manageable. T

FIG. 6. The time series for the number of nodesNl(t) in a small
segment of lengthl in the system, was recorded, and then the pow
spectrum,S( f ) of Nl(t) was calculated forl 5500. The straight
line has a slope of22.3.
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therefore have to resort to simple, idealistic models that c
ture the essential features of real systems. Cellular autom
models@22# are increasingly used in simulations of compl
physical systems such as fluid dynamics@23#, sand piles
@18#, and highway traffic@8,10#. In some of the systems
cellular automaton models provide only some general qu
tative features of the system while in other cases useful qu
titative information can be obtained. One-dimensional~1D!
cellular automaton models are very simple. They are s
cessfully used for capturing the critical slope of sand pil
although the 1D situation looks completely unrealistic f
modeling sand piles. 1D models are also unrealistic for co
puter networks. However, based on such 1D models, it is
feasible to capture the essential features of a network:
network self-organizes into a critical state by interactions
nodes. For selecting the periodic boundary condition in
model, we first consider that the law of conservation of pa
ets in the transmission control protocol of the Internet. S
ondly, the emergence of self-organized criticality does not
on the open boundary condition or the periodic one in
model@24,25#, though the former is more reasonable. Thir
it is not easy to select a typical open boundary condition. I
convenient for simulation to choose a periodic bound
condition. Of course, it is not quite perfect for both th
model and the condition, but this is an initial work in a ne
area. We hope our work will lead to widespread discuss
and more reasonable models for dynamics of the Inte
itself.
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